Discurso matemático ∑

Iniciamos una breve selección de recursos asociados al discurso matemático, orientado principalmente a la comunicación oral (p. ej. math-talk), aunque no limitado a ella. Creemos que la comunicación oral y las técnicas discursivas en general, son especialmente relevantes para lograr la participación efectiva durante el estudio grupal de temas matemáticos online. 

[rev. 2021.11.01]

(from) MAA Mathematical Communication
Balancing conceptual with formal (en General Principles of Mathematical Communication) {ver en particular el artículo anotado: Maximum overhang. }  @2021.10.31

Referencias preliminares:

  1. Andrews, Paul; Hatch, Gillian (2001) Hungary and Its Characteristic Pedagogical Flow. In Winter, J. (Ed.) Proceedings of BCME5. [acc. 2020.08.06]
  2. Bodily, Janice (2012) A Classroom Experiment: Implementing a Math-Talk Environment in a University Setting. Utah State University. [acc. 2020.08.06]
  3. Esmonde, Indigo (2009) Explanations in mathematics classrooms: A discourse analysis. Canadian Journal of Science, Mathematics and Technology Education, 9(2), 86-99. [acc. 2020.08.06]
  4. [Faculty Focus] (2020). A Resource Guide for Transitioning Your Class Online. Magna Publications, Inc. [acc. 2020.08.06]
  5. Hufferd-Ackles, Kimberly (2015) Describing Levels and Components of a Math-Talk Learning Community. Journal for Research in Mathematics Education 35(2) 81-116. {Ver también: Research Synopses: Math-Talk Learning Community} [acc. 2020.08.06]
  6. Hoffman, Brittany L, et al. (2009) The Power of Incorrect Answers. Mathematics Teaching in the Middle School 15:4. [acc. 2020.08.06]
  7. Kersaint, Gladis (2015) Orchestrating Mathematical Discourse to Enhance Student Learning: Creating successful classroom environments where every student participates in rigorous discussions. Curriculum Associates, LLC. [acc. 2020.08.06]
  8. Resnick, Lauren B, et al. (2018) Accountable talk: instructional dialogue that builds the mind. UNESDOC Biblioteca Digital. {Note que tiene opción a download PDF} [acc. 2020.08.06]
  9. Sfard, Anna; et al. (1998a) On Two Metaphors for Learning and the Dangers of Choosing Just One. Educational Researcher, 27(2) 4-13. {acc. 2020.08.06}
  10. Sfard, Anna; et al. (1998b) Learning Mathematics through Conversation: Is It as Good as They Say?. For the Learning of Mathematics 18, 1 {acc. 2020.08.06}
  11. Sfard, Anna: Prusak, Anna (2005) Identity that makes a difference: substantial learning as closing the gap between actual and designated identities. In Chick, H. L. & Vincent, J. L. (Eds.). Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, pp. 37-52. Melbourne: PME {acc. 2020.08.06}
  12. Sfard, Anna (2007) When the Rules of Discourse Change, but Nobody Tells You: Making Sense of Mathematics Learning From a Commognitive Standpoint. The Journal of the Learning Sciences,  16(4), 567–615.  Copyright © Lawrence Erlbaum Associates, Inc. {acc. 2020.08.06}
  13. Venegas-Thayer, M. Alicia (2019) Chapter 4. Integration from a Commognitive Perspective: An Experience with Mathematics and Music Students.  Capítulo del libro Doig, Brian, et al. Interdisciplinary Mathematics Education: The State of the Art and Beyond. ICME-13 Monographs. [acc. 2020.08.06]
  14. Wells, Charles (2003) A Handbook of Mathematical Discourse. Case Western Reserve University. [acc. 2021.11.01]

Videos selectos: